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2 Università di Torino, Dipartimento di Fisica Generale, via P. Giuria 1, 10125 Torino, Italy

Received 13 August 1998

Abstract. In order to reduce measurement uncertainty of the (220) lattice spacing of silicon to a few
parts per 109, a combined X-ray and optical interferometer capable of millimeter scans is being tested.
A new series of measurements confirmed the value obtained with our previous set-up, and the bounds of
measurement uncertainty were investigated. The article supplements the analysis of the error budget and
provides a safer footing for the monocrystalline silicon lattice parameter value.

PACS. 06.20.Jr Determination of fundamental constants – 06.30.Bp Spatial dimensions
(e.g., position, lengths, volume, angles, displacements, including nanometer-scale displacements) –
61.10.-i X-ray diffraction and scattering

1 Introduction

The Committee on Data for Science and Technology of the
International Council of Scientific Unions is engaged in re-
fining the self-consistent set of values of the basic physical
constants recommended for use in science and technology
[1]. Among these, the (220) silicon lattice spacing, d220,
is very important for the extension of the electromagnetic
scale toward the γ-ray region [2] and for the determina-
tions of the Avogadro [3,4] and fine structure [5] constants.

Having obtained a value with 3× 10−8 relative uncer-
tainty by operating a combined X-ray and optical interfer-
ometer over an 80 µm scan, we decided for two reasons to
improve X-ray and laser interferometry. First, in the X-ray
crystal-density determination of the Avogadro constant,
the uncertainties of the measurements of silicon density
and molar mass are being reduced to the extent that the
contribution of the d220 value to the NA uncertainty may
become no longer negligible. Second, the largest contri-
bution to the uncertainty of the fine structure constant
value obtained from the measurement of the de Broglie
wavelength of thermal neutrons is due to the d220 value.

We thus designed a scanning device capable of millime-
ter displacements with which we carried out additional
measurements; we reconsidered the overall error and in-
vestigated some critical aspects of X-ray and laser inter-
ferometry. The analysis of the new data led us to conclude
that a 10−9 measurement uncertainty is not beyond ex-
perimental capabilities. This article is an account of the
research thus far completed: it gives the results of the in-
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vestigations, supplements the analysis of the d220 error
budget, and describes future plans for the experiment.

2 Experimental set-up

To measure the (220) silicon lattice spacing we use a com-
bined X-ray and laser interferometer situated in a vacuum-
tight and temperature-controlled chamber. Figure 1 shows
a diagram of the X-ray and optical interferometers. Since
detailed descriptions of their operation and of the mea-
surement procedure are reported elsewhere [6–13], we give
here only a brief account. The lattice spacing is obtained
by counting the number of (220) planes in a crystal por-
tion of known length; for this an X-ray interferometer and
a laser interferometer must be so coupled as to have the
same baseline, along which a silicon crystal, which is a
part of the X-ray interferometer known as the analyser,
is moved orthogonally to the (220) planes. The outgoing
X-rays are intensity modulated as the analyser moves, and
the number of lattice planes passing is indicated by the
number of traveling fringes. Therefore, what is measured
is the number of traveling X-ray fringes in a given crystal
displacement, which is equal to an integer number of op-
tical periods. To avoid counting all the lattice planes, we
measure the excess fraction of X-ray fringe at the ends of
displacements of increasing length (the progression used
was 1, 10, 100, 1000, and 5000 optical periods) and in-
crease the accuracy step by step. There is always a small
residual drift between the X-ray and laser interferometers;
therefore, values are corrected by averaging the results of
a sequence of displacements in opposite directions; each
measurement takes about one hour.
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Fig. 1. Diagram of the combined X-ray and optical interfer-
ometers. C1 and C2 movable (analyser) and fixed crystals of
the X-ray interferometer, M fixed mirror of the laser interfer-
ometer, P polariser, PBS polarising beam splitter, PM phase
modulator, s analyser displacement.

3 Remeasurement of lattice spacing

For the remeasurements, we used the same X-ray interfer-
ometer (labeled MO*4) as described in [6,7], but the ex-
perimental apparatus was taken apart and reassembled,
the laser source replaced and the guiding device signifi-
cantly improved. The relatively short scan, 80 µm, was
one of the factors limiting the accuracy of the value we
reported in [6,7]. The combination of finite-element anal-
ysis and active control allowed us to achieve millimeter
displacements by constructing an elastic guide capable of
scan velocity from 1 pm/s to 0.1 mm/s and of translations
up to 2 mm, smooth to within 1 pm, with yawing and
pitching to within 1 nrad [14]. An example of the capabil-
ities of the new set-up is given in Figure 2. It shows the his-
togram of 45 consecutive measurements of the number of
X-ray fringes per optical period. In order to achieve max-
imum resolution, we counted the number of X-ray fringes
in 5000 optical periods, about 1.6 mm. The standard devi-
ations of the single measurement results, estimated from
the number of photon detected [15] and represented in the
figure by the error bars, is close to the width of the his-
togram. For the value obtained by averaging the results of
a typical sequence of measurements, the standard devia-
tion reduces to below 10−9. This is a key result: over one
hour time scales, the biggest contribution to data spread
is made by the photon count and our set-up is suitable
to investigate systematic errors down to a relative mag-
nitude of 10−9. Figure 3 gives a second example. In this
group of measurements, the wavelength of the stabilised
laser source was intentionally varied from that of the com-
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Fig. 2. Histogram of 45 measurement results of n, the number
of X-ray fringes (lattice planes) per optical period. Solid line
is the best fit of data to a Gauss distribution. All values are
reduced to 22.5 ◦C, but are not otherwise corrected.
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Fig. 3. Number of X-ray fringes per optical period, n, ver-
sus wavelength of the stabilised laser radiation. The absorbing
molecule is 127I2. Dots relate to components from a12 to a18 of
the transition 11-5, R(127). Solid line is the best fit of data to
a straight line.

ponent a12 to that of the component a18 of the transition
11-5 R(127) of the 127I2 molecule. As shown in the figure,
we could detect the linear increase of the X-ray fringes
per optical period. Before the lattice spacing value is cal-
culated, the number of X-ray fringes must be corrected
for several systematic errors. In order to investigate these
errors in-depth, several sets of measurements were done,
and are described below. Table 1 summarises the d220
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Table 1. Summary of d220 values.

date valuea (fm) remarks

1994 192 015.551(5) references [11,12]

1996 (October) 192 015.552(4) crystal temperature

1996 (October) 192 015.552(4) lattice strain

1996 (November) 192 015.547(4) crystal movement

1996 (December) 192 015.551(4) diffraction

1997 (January) 192 015.550(4) residual pressure
avalues are not corrected for C and O contents.

Table 2. Corrections and uncertainties (×108).

optical wavelength −0.4± 0.2

Fresnel’s diffraction 2.0± 1.0

laser beam alignment 0.3± 0.4

crystal temperature 0.3± 0.5

movement direction 0.0± 1.3

Abbe’s error 0.0± 0.5

lattice strain 0.0± 0.8

overall (IMGC crystal) 2.2± 2.1

values and indicates the investigation that gave the values
reported; Table 2 gives corrections and uncertainties of a
typical measurement.

4 Investigation of systematic errors

4.1 Residual pressure

When operating in air, the performances of the combined
X-ray and optical interferometer are negatively influenced
by the fluctuations of the refractive index of air. Measure-
ments were therefore done in vacuo. In order to evaluate
precisely the correction for the residual gas in the vac-
uum chamber pressure was intentionally varied between
5 µbar to 25 µbar. As Figure 4 shows, we were able to de-
tect the variation of the measured value and the final d220

value was obtained by extrapolating the data to a perfect
vacuum. The asymptotic value for low pressures of the re-
fractivity per mbar at room temperature obtained from
data in Figure 4 is n − 1 = (3.4 ± 0.4) × 10−7 1/mbar.
Since, according to the Lorenz-Lorentz equation, refrac-
tivity is, to within a good approximation, proportional to
residual-gas density, this value can be compared with the
value 2.7×10−7 1/mbar, obtained by dividing refractivity
of standard air at room temperature by 1013 mbar [16].

4.2 Crystal temperature

Since lattice spacing is a function of the crystal temper-
ature, its value, to be meaningful, must be referred to a

pressure (µbar)

d 22
0 -

 1
92

01
5 

fm
 (

fm
)

5 x 10-9

0.55

0.551

0.552

0.553

0 5 10 15 20 25

Fig. 4. Effect of residual gas in the vacuum chamber on the
result of the d220 measurement. Solid line is the best fit of data
to a straight line.

reference temperature, established in our normal practice
at 22.5 ◦C, by applying a correction for thermal strain.
However, the thermal expansion values reported in the
literature vary by more than the targeted d220 uncer-
tainty. Furthermore, most of the published data concerns
smooth approximating functions covering a temperature
range wider than necessary. Thermal expansion at a given
temperature can only be determined by measuring crystal
expansion over a small temperature range.

In the measurements, temperature was varied between
21.0 ◦C and 23.5 ◦C and a polynomial approximation for
the thermal expansion coefficient was accurately deter-
mined. A detailed description of these measurements and
the results are reported in [17]. As shown in Figure 5,
we observed the thermal strain of the silicon lattice and
the final d220 value was obtained by interpolation. Hence,
temperature correction was made according to first order
polynomial approximation

α(T ) = α0 + β∆T (1)

where ∆T is the temperature deviation from 22.5 ◦C, and

α0 = (2.581± 0.002)× 10−6 1/K (2a)

and

β = (0.016± 0.004)× 10−6 1/K
2

(2b)

have been obtained from data in Figure 5.

4.3 Diffraction in laser interferometry

We identified diffraction as an important source of errors,
and measurement results needed to be corrected by θ2/4,
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Fig. 5. Thermal expansion of (220) lattice planes. Solid line
is the best fit of data to a parabola.

where θ is the divergence of the laser beam. We stud-
ied diffraction by using the Gaussian approximation [18]
of the laser beam, and then we extended the analysis to
beam shear [19] and astigmatism [20]. However, millime-
ter scans, permitting an increase of one order of mag-
nitude in resolution, put the matter in a different light.
The laser beam is delivered by means of a single-mode
polarisation-preserving optical fibre whose output is colli-
mated by means of a high-numerical-aperture lens. A way
to minimise the correction for diffraction is with the col-
limating lens, but the lens introduces aberrations, chiefly
spherical aberration and beam truncation. Although we
are looking at remedies, the perfection represented as a
Gaussian beam can never be actually attained. The po-
tential 10−9 accuracy raises thus questions about correc-
tion calculation and about the assessment of how close the
beam is to the perfection represented, conceptually, as a
Gauss function.

The operation of the laser interferometer was therefore
studied using Fourier optics [21]. The main results were,
firstly, that the correction for diffraction is proportional to
the width of the angular spectrum of the field distribution
over the interferometer aperture and, secondly, that, pro-
vided it is expressed in terms of the far-field divergence,
the correction is given by the same formula as for a Gauss
distribution, no matter what the actual field distribution
may be. A third key result is that minimum correction is
made for a Gauss distribution.

In order to investigate this error in depth we enhanced
diffraction by varying the aperture of the laser interfer-
ometer from 1 mm to 6 mm with an iris diaphragm. Re-
sults are shown in Figure 6. The correction expected for a
truncated Gauss distribution with circular symmetry was
calculated, and the waist size of the incoming beam ad-
justed until observations were reproduced. The best fit of
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Fig. 6. Effect of the aperture of the laser interferometer on
the result of the d220 measurement. Solid line is the best fit of
data to the predicted function.

data to the predicted function was when the waist size
was 2 mm (1/e2 diameter). Although, within the limits of
this qualitative investigations, this waist size agrees with
the value obtained by measuring the far-field divergence,
we cautiously rounded diffraction correction to 2× 10−8.

4.4 Lattice strains

The targeted accuracy also raises questions about the
value to be attributed to an ideal undistorted crystal, of
which MO*4 is an approximate realisation. Long range
strains were investigated by mapping the lattice spacing
along the scan direction. X-rays were shifted in 0.2 mm
steps and lattice spacing was measured in 45 adjacent
crystal slabs. Results are in Figure 7, and show that,
when the X-rays location is changed, measurement re-
producibility is lost. However, lattice spacing does not
uniquely determine the period of X-ray fringes unless the
movable crystal is free from thickness variations [22–25]
and, owing to limits of manufacturing accuracy, the thick-
ness of the MO*4 crystal changes from one point to the
next. Although, in principle, aberrations can be separated
from lattice strains by their different effects on fringes of
transmitted and reflected beams, our present set-up did
not prove capable of such a separation and, consequently,
there is no single interpretation of data in Figure 7. The
final d220 value was measured in that part of the crystal
which is at 6 mm from the front, and where the d220 value
is, to within a good approximation, equal to the average.

4.5 Crystal movement

In our experiment, the path of the crystal is an arc lying
in the vertical plane, and the local direction of movement,
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Fig. 7. Map of d220 along the scan direction. The solid line is
a smooth interpolation between data.

that is the tangent to the path, depends linearly on the
position of the crystal [14]. The non-rectilinear path com-
bines with the angleα between the lattice planes and front
face of the analyser (the moving mirror of the laser inter-
ferometer) and changes the paths which are measured by
X-rays and laser interferometer. Let us consider a plane
path having a constant curvature R and let us introduce
a coordinate s normal to the front face of the analyser.
With the simplifying assumption that the laser beam is
normal to the front face, s is the quantity actually mea-
sured by the laser interferometer. Thus, since the analyser
position is

u(s) = sex −
s2

2R
ez, (3)

where ex is orthogonal to the front face and ez is vertical,
the phase of traveling X-ray fringes versus the result of
the position measurement is

Φ(s) = h · u(s) = h

[
s−

αzs
2

2R

]
(4)

where h, with h = 2π/d220, is the reciprocal vector
and αz = h · ez/h is the “vertical” component of α.
Equation (4) indicates that, when the path is not recti-
linear, the number of traveling X-ray fringes no longer
increases linearly with the result of the position measure-
ment. Rather, it is a copy of the path, a consequence of
having measured displacement along the normal to the
front face rather than to the lattice planes. This copying
makes the d220 value, the derivative of the fringe phase,
linearly dependent on the result of the analyser-position
measurement. We verified these predictions by using an
X-ray interferometer (labeled WASO 4.2A) loaned to us
by the Physikalisch-Technische Bundesanstalt (PTB) in
which, in spite of the smaller overall angle, αz is rela-
tively large. Results are shown in Figures 8 and 9. The
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values αz = (28.7± 0.6) µrad and αz = (27.8± 0.3) µrad
are derived from R = 90 mm and the data in Fig-
ures 8 and 9. These values can be compared with αz =
(29.6± 0.7) µrad, measured by means of X-ray diffractom-
etry and given in [26]. The final d220 value was obtained
by centering the analyser displacement on the path point
whose tangent bisects αz, thus ensuring that the displace-
ment components measured by the X-rays and the laser
interferometer coincide [27].
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Other errors are caused by the way the guiding system
is driven [20]. The crystal movement undergoes minute
oscillations with periodicity Λ ≈ 0.11 mm and amplitude
A ≈ 10 nm. In order to investigate the effect of these
undulations, let us write the analyser position as

u(s) = sex +A sin(2πs/Λ)ey, (5)

where ey is orthogonal to ex and lies in the plane of the
undulations. The phase of traveling X-ray fringes versus
the result of the position measurement is

Φ(s) = h

[
s+Aαy sin(2πs/Λ)

]
, (6)

where αy = h · ey/h is the “horizontal” component of α.
Owing to the small value of the undulation amplitude, and
since αy ≈ 0.1 mrad, the excess phase might appear to be
lost in the hs term, and detection of the phase oscillations
beyond present capabilities of X-ray and optical interfer-
ometry. However, the undulations have a detectable effect
on the lattice spacing measurement. In fact,

d220 ≈
1

n

[
∆s+ 2Aαy sin(π∆s/Λ) cos(2πs̃/Λ)

]
, (7)

where n is the number of traveling X-ray fringes in the
scan ∆s and s̃ is the scan mid-point. The results of the
d220 measurement may thus be expected to oscillate as
much as the crystal path, but with an amplitude modu-
lated by sin(π∆s/Λ). We varied ∆s from 893λ/2 (about
2.5Λ) to 1000λ/2 (about 2.8Λ) and to 1048λ/2 (about
3Λ). Actually, for each given ∆s value, the scan mid-point
was shifted in 40λ/2 (about 0.1Λ) steps and the num-
ber of traveling X-ray fringe was measured in 18 adjacent
(partially overlapping) fractions of the analyser path. Re-
sults are shown in Figure 10: the forward differences of the
phase waveform generated by crystal motion produce os-
cillations, whose amplitude is maximum when ∆s = pΛ/2
and zero when ∆s = pΛ, with p integer, as expected. The
final d220 value was obtained by counting the number of
X-ray fringes per 1048λ/2 displacement.

4.6 Crystal attitude

In order to keep Abbe’s error (the combined effect of anal-
yser rotation and offset between the X-rays and the laser
beam) to a minimum, adjacent parts of the optical in-
terference pattern are integrated over the four parts of a
quadrant detector and information about wavefront tilts
are derived. Null pitch and yaw angles are thus measured
to within 0.5 nrad, and the error signals are used to auto-
matically keep the analyser parallel during its movement.
In applying this technique to eliminate rotations, we ob-
served an unexpected behaviour of the combined X-ray
and optical interferometer, which we summarise in Fig-
ure 11. The pitch angle, which is nulled by the feedback
of the optical error signal, is simultaneously and indepen-
dently monitored by X-rays. The X-ray measuring princi-
ple is as simple as the optical one. Top and bottom parts
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Fig. 11. X-ray measurement of the pitch angle. The solid lines
is the best fit of data to a parabola.

of the X-ray interference pattern are integrated over two
parts of a position-sensitive detector. The crystal move-
ment is thus measured at two points spaced vertically by
a few millimeters: any rotation reveals itself as a relative
advance or delay of traveling X-ray fringes. As shown in
Figure 11, X-rays reveal that, despite the action of the
electronic pitch control, the crystal rotates. Two features
are evident in Figure 11. First, the pitch angle drifts with
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Fig. 12. Geometry of the pitch-angle measurement by the laser
interferometer.

displacement. This phenomenon has been explained as due
to imperfect alignment between the optical axes of the
laser beam and of the interferometer (the normal to the
analyser front face) [19]. Second, the millimetre displace-
ment brought into evidence a quadratic term, which was
unnoticed in our previous investigations.

We carried out many different experiments which ruled
out the possibility of this phenomenon being due to non-
uniform lattice strains or to aberrations of the laser beam
wavefront. In our opinion, it is a measurement error of
the angle-interferometer which is due to the combined ef-
fect of circular path and curvature of the front mirror.
Since, owing to path circularity, the analyser moves verti-
cally, the angle interferometer performs the derivative of
its front surface, as shown in Figure 12. For the sake of
simplicity, let us consider a two-dimensional mirror sur-
face described by x = z2/(2Rm), where Rm is the curva-
ture radius. In the absence of pitch rotations, the angle
signal is ρ = dx/dz = z/Rm, where z is the vertical po-
sition of the analyser. Thus, since from (3) z = s2/(2R),
the measurement error is

ρ =
s2

2RRm
· (8)

This error is corrected for by rotating the analyser by a
counter sign angle, detected by X-rays, and reported in
Figure 11. The radius of curvature of the analyser front
face estimated from the data in the figure is 600 m. In
order to check the notion that this anomaly corresponds to
a “spherical” mirror, the PTB measured the flatness of the
analyser front face. Although, on average, the front face is
very flat, it presents undulations having a “wavelength” of
a few millimeters and an amplitude of about 10 nm (peak

to valley). Therefore, within the limits of the present data,
the radius of curvature estimated from data in Figure 11
is consistent with the distortion found.

5 Outlooks

This article provides new accurate values of the (220)
lattice-plane spacing of the MO*4 standard, supplements
the analysis of its error budget and gathers evidence of
important new advances in the measurements of macro-
scopic displacements with picometer-scale resolution. Our
new set-up proved able to reduce systematic errors to a
magnitude of 10−9d220 and observations led us to con-
firm the d220 value we gave previously [11]. This value
should be compared with that reported in [7] for the
PTB standard WASO 4.2A. In order to check the consis-
tency of these two absolutely measured lattice spacings,
the PTB performed a comparison between the MO*4 and
WASO 4.2A standards. The difference between the two
absolute values [7,11],

dWASO4.2A
220 − dMO∗4

220 = (6± 6)× 10−8d220, (9a)

can be compared with the expected difference of lattice
spacings due to their different carbon and oxygen con-
tamination [28],

dWASO4.2A
220 − dMO∗4

220 = (7± 3)× 10−8d220, (9b)

and with the comparison result [29],

dWASO4.2A
220 − dMO∗4

220 = (10± 1)× 10−8d220. (9c)

These data shows that the difference between the abso-
lute (220) lattice-plane spacing values of WASO 4.2A and
MO*4 standards can be explained by an actual lattice-
plane spacing difference, probably due to their different
contaminations.

We conclude that a 10−9 relative uncertainty is within
the capabilities of scanning X-ray and optical interfer-
ometry, but continued step-by-step improvements will be
needed. The relatively poor geometrical and crystallo-
graphic quality of the MO*4 crystal is a limit. The growing
of still better silicon crystals, a task pursued by Wacker
Chemitronic, is among the topics considered by the ad hoc
Working Group on the Avogadro Constant established in
1995 by the “Comité Consultatif pour la Masse of the
Bureau International des Poids et Mesures”. In the im-
mediate future we need to improve etching of X-ray in-
terferometers to make it geometrically comparable with
grinding. The particular problem still remains that move-
ment is not along a straight line and that the transverse
components of the movement are not under control. In
this connection, over the next years, we aim to develop a
five-degrees-of-freedom positioning system capable of con-
trolling actively the transverse movements to within 1 nm
resolution.

We cordially thank our PTB colleagues P. Becker and U. Kuet-
gens for the loan of their WASO 4.2A interferometer, the front-
face flatness measurement, and the lattice comparison.
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